Monday, November 14, 2016

Gleitender Durchschnitt Der Bestellung 2

Gleitender Durchschnitt - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Abwärts-Momentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn eine kurzfristige MA unter einer längerfristigen MA. Moving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen . Jede Art durchschnittlich bewegen (allgemein in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl vergangener Datenpunkte berechnet. Sobald bestimmt ist, wird der resultierende Mittelwert dann auf einem Diagramm aufgetragen, um Händler zu ermöglichen, bei geglätteten Daten zu suchen, anstatt sich auf den Tag-zu-Tag Preisschwankungen, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel aus einer gegebenen Menge von Werten berechnet. Um zum Beispiel eine grundlegende 10-Tage gleitenden Durchschnitt zu berechnen würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann teilen Sie das Ergebnis durch 10. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung zu geben, wie ein Gewinn für den letzten 10 Tagen relativ preiswert ist. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig auf neue Daten, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Informationen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie wollen, wenn die Schaffung der Durchschnitt. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: So verwenden Sie Them Subscribe to News Für die neuesten Erkenntnisse und Analysen verwenden Dank für die Unterzeichnung bis zu Investopedia Insights - News to Use. Moving Averages - Einfache und Exponential Moving Averages - Einfache und exponentielle Einführung Die gleitenden Mittelwerte glatt die Preisdaten zu Bilden einen Trendfolger. Sie prognostizieren nicht die Kursrichtung, sondern definieren die aktuelle Richtung mit einer Verzögerung. Moving Averages Lag, weil sie auf vergangenen Preisen basieren. Trotz dieser Verzögerung, gleitende Durchschnitte helfen, glatte Preis-Aktion und Filter aus dem Lärm. Sie bilden auch die Bausteine ​​für viele andere technische Indikatoren und Overlays, wie Bollinger Bands. MACD und dem McClellan-Oszillator. Die beiden beliebtesten Arten von gleitenden Durchschnitten sind die Simple Moving Average (SMA) und die Exponential Moving Average (EMA). Diese Bewegungsdurchschnitte können verwendet werden, um die Richtung des Trends zu identifizieren oder potentielle Unterstützungs - und Widerstandswerte zu definieren. Here039s ein Diagramm mit einem SMA und einem EMA auf ihm: Einfache gleitende durchschnittliche Berechnung Ein einfacher gleitender Durchschnitt wird gebildet, indem man den durchschnittlichen Preis eines Wertpapiers über einer bestimmten Anzahl von Perioden berechnet. Die meisten gleitenden Mittelwerte basieren auf den Schlusskursen. Ein 5-tägiger einfacher gleitender Durchschnitt ist die fünftägige Summe der Schlusskurse geteilt durch fünf. Wie der Name schon sagt, ist ein gleitender Durchschnitt ein Durchschnitt, der sich bewegt. Alte Daten werden gelöscht, wenn neue Daten verfügbar sind. Dies bewirkt, dass sich der Durchschnitt entlang der Zeitskala bewegt. Unten ist ein Beispiel für einen 5-tägigen gleitenden Durchschnitt, der sich über drei Tage entwickelt. Der erste Tag des gleitenden Durchschnitts deckt nur die letzten fünf Tage ab. Der zweite Tag des gleitenden Mittelwerts fällt den ersten Datenpunkt (11) und fügt den neuen Datenpunkt (16) hinzu. Der dritte Tag des gleitenden Durchschnitts setzt sich fort, indem der erste Datenpunkt (12) abfällt und der neue Datenpunkt (17) addiert wird. Im obigen Beispiel steigen die Preise allmählich von 11 auf 17 über insgesamt sieben Tage. Beachten Sie, dass der gleitende Durchschnitt auch von 13 auf 15 über einen dreitägigen Berechnungszeitraum steigt. Beachten Sie auch, dass jeder gleitende Durchschnittswert knapp unter dem letzten Kurs liegt. Zum Beispiel ist der gleitende Durchschnitt für Tag eins gleich 13 und der letzte Preis ist 15. Preise der vorherigen vier Tage waren niedriger und dies führt dazu, dass der gleitende Durchschnitt zu verzögern. Exponentielle gleitende Durchschnittsberechnung Exponentielle gleitende Mittelwerte reduzieren die Verzögerung, indem mehr Gewicht auf die jüngsten Preise angewendet wird. Die Gewichtung des jüngsten Preises hängt von der Anzahl der Perioden im gleitenden Durchschnitt ab. Es gibt drei Schritte, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Berechnen Sie zunächst den einfachen gleitenden Durchschnitt. Ein exponentieller gleitender Durchschnitt (EMA) muss irgendwo anfangen, so dass ein einfacher gleitender Durchschnitt als die vorherige Periode039s EMA in der ersten Berechnung verwendet wird. Zweitens, berechnen Sie die Gewichtung Multiplikator. Drittens berechnen Sie den exponentiellen gleitenden Durchschnitt. Die folgende Formel ist für eine 10-tägige EMA. Ein 10-Perioden-exponentieller gleitender Durchschnitt wendet eine 18,18 Gewichtung auf den jüngsten Preis an. Eine 10-Perioden-EMA kann auch als 18.18 EMA bezeichnet werden. Ein 20-Perioden-EMA wendet einen 9,52 - Wiegen auf den jüngsten Preis an (2 / (201) .0952). Beachten Sie, dass die Gewichtung für den kürzeren Zeitraum mehr ist als die Gewichtung für den längeren Zeitraum. In der Tat, die Gewichtung sinkt um die Hälfte jedes Mal, wenn die gleitende durchschnittliche Periode verdoppelt. Wenn Sie uns einen bestimmten Prozentsatz für eine EMA zuweisen möchten, können Sie diese Formel verwenden, um sie in Zeiträume zu konvertieren, und geben Sie dann diesen Wert als den EMA039s-Parameter ein: Nachstehend ist ein Kalkulationstabellenbeispiel für einen 10-tägigen einfachen gleitenden Durchschnitt und ein 10- Tag exponentiellen gleitenden Durchschnitt für Intel. Einfache gleitende Durchschnitte sind geradlinig und erfordern wenig Erklärung. Der 10-Tage-Durchschnitt bewegt sich einfach, sobald neue Preise verfügbar sind und alte Preise fallen. Der exponentielle gleitende Durchschnitt beginnt mit dem einfachen gleitenden Mittelwert (22.22) bei der ersten Berechnung. Nach der ersten Berechnung übernimmt die Normalformel. Da eine EMA mit einem einfachen gleitenden Durchschnitt beginnt, wird ihr wahrer Wert erst nach 20 oder späteren Perioden realisiert. Mit anderen Worten, der Wert auf der Excel-Tabelle kann sich aufgrund des kurzen Rückblicks von dem Diagrammwert unterscheiden. Diese Kalkulationstabelle geht nur zurück 30 Perioden, was bedeutet, dass der Einfluss der einfachen gleitenden Durchschnitt hatte 20 Perioden zu zerstreuen. StockCharts geht mindestens 250 Perioden (typischerweise viel weiter) für seine Berechnungen zurück, so dass die Effekte des einfachen gleitenden Durchschnitts in der ersten Berechnung vollständig abgebaut sind. Der Lagfaktor Je länger der gleitende Durchschnitt ist, desto stärker ist die Verzögerung. Ein 10-Tage-exponentieller gleitender Durchschnitt wird die Preise sehr eng umringen und sich kurz nach dem Kursumschlag wenden. Kurze gleitende Durchschnitte sind wie Schnellboote - flink und schnell zu ändern. Im Gegensatz dazu enthält ein 100-Tage gleitender Durchschnitt viele vergangene Daten, die ihn verlangsamen. Längere gleitende Durchschnitte sind wie Ozeantanker - lethargisch und langsam zu ändern. Es dauert eine größere und längere Kursbewegung für einen 100-Tage gleitenden Durchschnitt, um Kurs zu ändern. Die Grafik oben zeigt die SampP 500 ETF mit einer 10-tägigen EMA eng ansprechender Preise und einem 100-tägigen SMA-Schleifen höher. Selbst mit dem Januar-Februar-Rückgang hielt die 100-tägige SMA den Kurs und kehrte nicht zurück. Die 50-Tage-SMA passt irgendwo zwischen den 10 und 100 Tage gleitenden Durchschnitten, wenn es um den Verzögerungsfaktor kommt. Simple vs Exponential Moving Averages Obwohl es klare Unterschiede zwischen einfachen gleitenden Durchschnitten und exponentiellen gleitenden Durchschnitten, ist eine nicht unbedingt besser als die anderen. Exponentielle gleitende Mittelwerte haben weniger Verzögerungen und sind daher empfindlicher gegenüber den jüngsten Preisen - und den jüngsten Preisveränderungen. Exponentielle gleitende Mittelwerte drehen sich vor einfachen gleitenden Durchschnitten. Einfache gleitende Durchschnitte stellen dagegen einen wahren Durchschnittspreis für den gesamten Zeitraum dar. Als solches können einfache gleitende Mittel besser geeignet sein, um Unterstützungs - oder Widerstandsniveaus zu identifizieren. Die gleitende Durchschnittspräferenz hängt von den Zielen, dem analytischen Stil und dem Zeithorizont ab. Chartisten sollten mit beiden Arten von gleitenden Durchschnitten sowie verschiedene Zeitrahmen zu experimentieren, um die beste Passform zu finden. Die nachstehende Grafik zeigt IBM mit der 50-Tage-SMA in Rot und der 50-Tage-EMA in Grün. Beide gipfelten Ende Januar, aber der Rückgang in der EMA war schärfer als der Rückgang der SMA. Die EMA erschien Mitte Februar, aber die SMA setzte weiter unten bis Ende März. Beachten Sie, dass die SMA über einen Monat nach der EMA. Längen und Zeitrahmen Die Länge des gleitenden Mittelwerts hängt von den analytischen Zielen ab. Kurze gleitende Durchschnitte (5-20 Perioden) eignen sich am besten für kurzfristige Trends und den Handel. Chartisten, die sich für mittelfristige Trends interessieren, würden sich für längere bewegte Durchschnitte entscheiden, die 20-60 Perioden verlängern könnten. Langfristige Anleger bevorzugen gleitende Durchschnitte mit 100 oder mehr Perioden. Einige gleitende durchschnittliche Längen sind beliebter als andere. Die 200-Tage gleitenden Durchschnitt ist vielleicht die beliebteste. Wegen ihrer Länge ist dies eindeutig ein langfristiger gleitender Durchschnitt. Als nächstes ist der 50-Tage gleitende Durchschnitt für den mittelfristigen Trend ziemlich populär. Viele Chartisten nutzen die 50-Tage-und 200-Tage gleitende Durchschnitte zusammen. Kurzfristig war ein 10 Tage gleitender Durchschnitt in der Vergangenheit ziemlich populär, weil er leicht zu berechnen war. Man hat einfach die Zahlen addiert und den Dezimalpunkt verschoben. Trendidentifikation Die gleichen Signale können mit einfachen oder exponentiellen gleitenden Mittelwerten erzeugt werden. Wie oben erwähnt, hängt die Präferenz von jedem Individuum ab. Die folgenden Beispiele werden sowohl einfache als auch exponentielle gleitende Mittelwerte verwenden. Der Begriff gleitender Durchschnitt gilt für einfache und exponentielle gleitende Mittelwerte. Die Richtung des gleitenden Durchschnitts vermittelt wichtige Informationen über die Preise. Ein steigender Durchschnitt zeigt, dass die Preise im Allgemeinen steigen. Ein sinkender Durchschnittswert zeigt an, dass die Preise im Durchschnitt sinken. Ein steigender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Aufwärtstrend wider. Ein sinkender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Abwärtstrend wider. Das Diagramm oben zeigt 3M (MMM) mit einem 150-Tage-exponentiellen gleitenden Durchschnitt. Dieses Beispiel zeigt, wie gut bewegte Durchschnitte arbeiten, wenn der Trend stark ist. Die 150-Tage-EMA sank im November 2007 und wieder im Januar 2008. Beachten Sie, dass es einen Rückgang von 15 nahm, um die Richtung dieses gleitenden Durchschnitts umzukehren. Diese nachlaufenden Indikatoren identifizieren Trendumkehrungen, wie sie auftreten (am besten) oder nach deren Eintritt (im schlimmsten Fall). MMM setzte unten in März 2009 und dann stieg 40-50. Beachten Sie, dass die 150-Tage-EMA nicht auftauchte, bis nach diesem Anstieg. Sobald es aber tat, setzte MMM die folgenden 12 Monate höher fort. Moving-Durchschnitte arbeiten brillant in starken Trends. Doppelte Frequenzweichen Zwei gleitende Mittelwerte können zusammen verwendet werden, um Frequenzweiche zu erzeugen. In der technischen Analyse der Finanzmärkte. John Murphy nennt dies die doppelte Crossover-Methode. Doppelte Crossover beinhalten einen relativ kurzen gleitenden Durchschnitt und einen relativ langen gleitenden Durchschnitt. Wie bei allen gleitenden Durchschnitten definiert die allgemeine Länge des gleitenden Durchschnitts den Zeitrahmen für das System. Ein System, das eine 5-Tage-EMA und eine 35-Tage-EMA verwendet, wäre kurzfristig. Ein System, das eine 50-tägige SMA - und 200-Tage-SMA verwendet, wäre mittelfristig, vielleicht sogar langfristig. Eine bullische Überkreuzung tritt auf, wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt kreuzt. Dies wird auch als goldenes Kreuz bezeichnet. Eine bärische Überkreuzung tritt ein, wenn der kürzere gleitende Durchschnitt unter dem längeren gleitenden Durchschnitt liegt. Dies wird als ein totes Kreuz bekannt. Gleitende Mittelübergänge erzeugen relativ späte Signale. Schließlich setzt das System zwei hintere Indikatoren ein. Je länger die gleitenden Durchschnittsperioden, desto größer die Verzögerung in den Signalen. Diese Signale funktionieren gut, wenn eine gute Tendenz gilt. Allerdings wird ein gleitender Durchschnitt Crossover-System produzieren viele whipsaws in Abwesenheit einer starken Tendenz. Es gibt auch eine Dreifach-Crossover-Methode, die drei gleitende Durchschnitte beinhaltet. Wieder wird ein Signal erzeugt, wenn der kürzeste gleitende Durchschnitt die beiden längeren Mittelwerte durchläuft. Ein einfaches Triple-Crossover-System könnte 5-Tage-, 10-Tage - und 20-Tage-Bewegungsdurchschnitte beinhalten. Das Diagramm oben zeigt Home Depot (HD) mit einer 10-tägigen EMA (grüne gepunktete Linie) und 50-Tage-EMA (rote Linie). Die schwarze Linie ist die tägliche Schließung. Mit einem gleitenden Durchschnitt Crossover hätte dazu geführt, dass drei Peitschen vor dem Fang eines guten Handels. Die 10-tägige EMA brach unterhalb der 50-Tage-EMA Ende Oktober (1), aber dies dauerte nicht lange, wie die 10-Tage zog zurück oben Mitte November (2). Dieses Kreuz dauerte länger, aber die nächste bärige Crossover im Januar (3) ereignete sich gegen Ende November Preisniveaus, was zu einer weiteren Peitsche führte. Dieses bärische Kreuz dauerte nicht lange, als die 10-Tage-EMA über die 50-Tage ein paar Tage später zurückging (4). Nach drei schlechten Signalen, schien das vierte Signal eine starke Bewegung als die Aktie vorrückte über 20. Es gibt zwei Takeaways hier. Erstens, Crossovers sind anfällig für whipsaw. Ein Preis oder Zeitfilter kann angewendet werden, um zu helfen, whipsaws zu verhindern. Händler könnten verlangen, dass die Crossover 3 Tage dauern, bevor sie handeln oder verlangen, dass die 10-Tage-EMA zu bewegen, über / unterhalb der 50-Tage-EMA um einen bestimmten Betrag vor handeln. Zweitens kann MACD verwendet werden, um diese Frequenzweichen zu identifizieren und zu quantifizieren. MACD (10,50,1) zeigt eine Linie, die die Differenz zwischen den beiden exponentiellen gleitenden Mittelwerten darstellt. MACD wird positiv während eines goldenen Kreuzes und negativ während eines toten Kreuzes. Der Prozentsatz-Oszillator (PPO) kann auf die gleiche Weise verwendet werden, um Prozentunterschiede anzuzeigen. Beachten Sie, dass MACD und das PPO auf exponentiellen gleitenden Durchschnitten basieren und nicht mit einfachen gleitenden Durchschnitten zusammenpassen. Diese Grafik zeigt Oracle (ORCL) mit dem 50-Tage EMA, 200-Tage EMA und MACD (50.200,1). Es gab vier gleitende durchschnittliche Kreuzungen über einen Zeitraum von 2 1/2 Jahren. Die ersten drei führten zu Peitschen oder schlechten Trades. Ein anhaltender Trend begann mit der vierten Crossover als ORCL bis Mitte der 20er Jahre. Erneut bewegen sich die durchschnittlichen Crossover-Effekte groß, wenn der Trend stark ist, erzeugen aber Verluste in Abwesenheit eines Trends. Preis-Crossover Moving-Durchschnitte können auch verwendet werden, um Signale mit einfachen Preis-Crossover zu generieren. Ein bullisches Signal wird erzeugt, wenn die Preise über dem gleitenden Durchschnitt liegen. Ein bäres Signal wird erzeugt, wenn die Preise unter dem gleitenden Durchschnitt liegen. Preis-Crossover können kombiniert werden, um innerhalb der größeren Trend Handel. Der längere gleitende Durchschnitt setzt den Ton für den größeren Trend und der kürzere gleitende Durchschnitt wird verwendet, um die Signale zu erzeugen. Man würde bullish Preiskreuze nur dann suchen, wenn die Preise schon über dem längeren gleitenden Durchschnitt liegen. Dies würde den Handel im Einklang mit dem größeren Trend. Wenn zum Beispiel der Kurs über dem gleitenden 200-Tage-Durchschnitt liegt, würden sich die Chartisten nur auf Signale konzentrieren, wenn der Kurs über dem 50-Tage-Gleitender Durchschnitt liegt. Offensichtlich würde ein Schritt unterhalb der 50-Tage gleitenden Durchschnitt ein solches Signal vorausgehen, aber solche bearish Kreuze würden ignoriert, weil der größere Trend ist. Ein bearish Kreuz würde einfach vorschlagen, ein Pullback in einem größeren Aufwärtstrend. Ein Cross-Back über dem 50-Tage-Gleitender Durchschnitt würde einen Preisanstieg und eine Fortsetzung des größeren Aufwärtstrends signalisieren. Die nächste Tabelle zeigt Emerson Electric (EMR) mit dem 50-Tage EMA und 200-Tage EMA. Die Aktie bewegte sich über und hielt über dem 200-Tage gleitenden Durchschnitt im August. Es gab Dips unterhalb der 50-Tage-EMA Anfang November und wieder Anfang Februar. Die Preise schnell zurück über die 50-Tage-EMA zu bullish Signale (grüne Pfeile) in Harmonie mit dem größeren Aufwärtstrend. Im Indikatorfenster wird MACD (1,50,1) angezeigt, um Preiskreuze über oder unter dem 50-Tage-EMA zu bestätigen. Die 1-tägige EMA entspricht dem Schlusskurs. MACD (1,50,1) ist positiv, wenn das Schließen oberhalb der 50-Tage-EMA und negativ ist, wenn das Schließen unterhalb der 50-Tage-EMA liegt. Unterstützung und Widerstand Der Gleitende Durchschnitt kann auch als Unterstützung in einem Aufwärtstrend und Widerstand in einem Abwärtstrend dienen. Ein kurzfristiger Aufwärtstrend könnte Unterstützung nahe dem 20-tägigen einfachen gleitenden Durchschnitt finden, der auch in Bollinger-Bändern verwendet wird. Ein langfristiger Aufwärtstrend könnte Unterstützung nahe dem 200-tägigen einfachen gleitenden Durchschnitt finden, der der populärste langfristige bewegliche Durchschnitt ist. Wenn Tatsache, die 200-Tage gleitenden Durchschnitt bieten kann Unterstützung oder Widerstand, nur weil es so weit verbreitet ist. Es ist fast wie eine sich selbst erfüllende Prophezeiung. Die Grafik oben zeigt die NY Composite mit dem 200-Tage einfachen gleitenden Durchschnitt von Mitte 2004 bis Ende 2008. Die 200-Tage-Support zur Verfügung gestellt, mehrmals während des Vorhabens. Sobald der Trend mit einem Doppel-Top-Support-Pause umgekehrt, der 200-Tage gleitenden Durchschnitt als Widerstand um 9500 gehandelt. Erwarten Sie nicht genaue Unterstützung und Widerstand Ebenen von gleitenden Durchschnitten, vor allem längeren gleitenden Durchschnitten. Märkte werden durch Emotionen gefahren, wodurch sie anfällig für Überschreitungen sind. Statt genauer Ebenen können gleitende Mittelwerte verwendet werden, um Unterstützungs - oder Widerstandszonen zu identifizieren. Schlussfolgerungen Die Vorteile der Verwendung von bewegten Durchschnitten müssen gegen die Nachteile gewogen werden. Moving-Durchschnitte sind Trend nach, oder nacheilende, Indikatoren, die immer einen Schritt hinter sich. Dies ist nicht unbedingt eine schlechte Sache. Immerhin ist der Trend ist dein Freund und es ist am besten, in die Richtung des Trends Handel. Die gleitenden Durchschnitte gewährleisten, dass ein Händler dem aktuellen Trend entspricht. Auch wenn der Trend ist dein Freund, verbringen die Wertpapiere viel Zeit in Handelsspannen, die gleitende Durchschnitte ineffektiv machen. Einmal in einem Trend, bewegte Durchschnitte halten Sie in, sondern geben auch späte Signale. Don039t erwarten, an der Spitze zu verkaufen und kaufen Sie am unteren Rand mit gleitenden Durchschnitten. Wie bei den meisten technischen Analysetools sollten die gleitenden Mittelwerte nicht allein verwendet werden, sondern in Verbindung mit anderen komplementären Tools. Chartisten können gleitende Durchschnitte verwenden, um den Gesamttrend zu definieren und dann RSI zu verwenden, um überkaufte oder überverkaufte Niveaus zu definieren. Hinzufügen von Bewegungsdurchschnitten zu StockCharts Diagrammen Gleitende Durchschnitte sind als Preisüberlagerungsfunktion auf der SharpCharts-Workbench verfügbar. Mit dem Dropdown-Menü Overlays können Benutzer entweder einen einfachen gleitenden Durchschnitt oder einen exponentiellen gleitenden Durchschnitt auswählen. Der erste Parameter wird verwendet, um die Anzahl der Zeitperioden einzustellen. Ein optionaler Parameter kann hinzugefügt werden, um festzulegen, welches Preisfeld in den Berechnungen verwendet werden soll - O für die Open, H für High, L für Low und C für Close. Ein Komma wird verwendet, um Parameter zu trennen. Ein weiterer optionaler Parameter kann hinzugefügt werden, um die gleitenden Mittelwerte nach links (vorbei) oder nach rechts (zukünftig) zu verschieben. Eine negative Zahl (-10) würde den gleitenden Durchschnitt auf die linken 10 Perioden verschieben. Eine positive Zahl (10) würde den gleitenden Durchschnitt auf die rechten 10 Perioden verschieben. Mehrere gleitende Durchschnitte können dem Preisplot überlagert werden, indem einfach eine weitere Überlagerungslinie zur Werkbank hinzugefügt wird. StockCharts-Mitglieder können die Farben und den Stil ändern, um zwischen mehreren gleitenden Durchschnitten zu unterscheiden. Nachdem Sie eine Anzeige ausgewählt haben, öffnen Sie die erweiterten Optionen, indem Sie auf das kleine grüne Dreieck klicken. Erweiterte Optionen können auch verwendet werden, um eine gleitende mittlere Überlagerung zu anderen technischen Indikatoren wie RSI, CCI und Volumen hinzuzufügen. Klicken Sie hier für ein Live-Diagramm mit mehreren verschiedenen gleitenden Durchschnitten. Verwenden von Moving Averages mit StockCharts-Scans Hier finden Sie einige Beispielscans, die die StockCharts-Mitglieder verwenden können, um verschiedene gleitende durchschnittliche Situationen zu scannen: Bullish Moving Average Cross: Diese Scans suchen nach Aktien mit einem steigenden 150-Tage-Durchschnitt und einem bullish Kreuz der 5 Tag EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt steigt, solange er über seinem Niveau vor fünf Tagen handelt. Ein bullish Kreuz tritt auf, wenn die 5-Tage-EMA bewegt sich über dem 35-Tage-EMA auf überdurchschnittlichen Volumen. Bearish Moving Average Cross: Diese Scans sucht nach Aktien mit einem fallenden 150-Tage einfachen gleitenden Durchschnitt und einem bärischen Kreuz der 5-Tage EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt fällt, solange er unter seinem Niveau vor fünf Tagen handelt. Ein bäriges Kreuz tritt auf, wenn die 5-Tage-EMA unterhalb der 35-Tage-EMA auf überdurchschnittlichem Volumen bewegt. Weitere Studie John Murphy039s Buch hat ein Kapitel gewidmet gleitende Durchschnitte und ihre verschiedenen Verwendungen. Murphy deckt die Vor-und Nachteile der gleitenden Durchschnitte. Darüber hinaus zeigt Murphy, wie bewegte Durchschnitte mit Bollinger Bands und kanalbasierten Handelssystemen funktionieren. Technische Analyse der Finanzmärkte John MurphyAutoregressive gleitende durchschnittliche Fehlerprozesse (ARMA-Fehler) und andere Modelle, die Lags von Fehlertermen enthalten, können durch Verwendung von FIT-Anweisungen geschätzt und simuliert oder prognostiziert werden, indem SOLVE-Anweisungen verwendet werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Modelle mit gleitenden Durchschnittsfehlern angegeben werden. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist usw. für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Mittelwerte sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL definiert wird. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen zu verkürzen. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und keine fehlenden Werte propagieren, wenn Verzögerungsperiodenvariablen fehlen, und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt Lag Logic. Dieses mit dem MA-Makro geschriebene Modell lautet wie folgt: Allgemeine Form für ARMA-Modelle Das allgemeine ARMA-Verfahren (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann wie folgt angegeben werden: wobei AR i und MA j repräsentieren Die autoregressiven und gleitenden Durchschnittsparameter für die verschiedenen Verzögerungen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozeß für die Fehler der beiden endogenen Variablen Y1 und Y2 wie folgt spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von 0,001 für ARMA Parameter in der Regel funktionieren, wenn das Modell die Daten gut und das Problem passt gut konditioniert. Man beachte, dass ein MA-Modell oft durch ein höherwertiges AR-Modell angenähert werden kann und umgekehrt. Dies kann in gemischten ARMA-Modelle in hohen Kollinearität führen, was wiederum kann zu schweren Fehlkonditionierung in den Berechnungen und Instabilität der Parameterschätzungen führen. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zunächst eine FIT-Anweisung nur die Strukturparameter mit den ARMA Parameter auf Null (oder zu vernünftigen früheren Schätzungen, wenn verfügbar), die zu schätzen. Verwenden Sie dann eine andere FIT-Anweisung nur die ARMA-Parameter zu schätzen, die strukturellen Parameterwerte aus dem ersten Lauf mit. Da die Werte der Strukturparameter sind wahrscheinlich ihre endgültigen Schätzungen nahe zu sein, könnten die ARMA Parameterschätzungen nun zusammenlaufen. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter jetzt wahrscheinlich ganz nahe an ihre endgültige gemeinsame Schätzungen zu sein, sollten die Schätzungen schnell konvergieren, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die autoregressiven Fehlerstartmethoden von SAS / ETS Verfahren unterstützt sind die folgenden: bedingten kleinsten Quadrate (ARIMA und MODEL Verfahren) bedingungslose kleinsten Quadrate (AUTOREG, ARIMA und MODEL Verfahren) Maximum-Likelihood (AUTOREG, ARIMA und MODEL Verfahren) Yule-Walker (AUTOREG Verfahren nur) Hildreth-Lu, die die ersten p Beobachtungen (MODEL Verfahren nur) löscht siehe Kapitel 8, Die AUTOREG Verfahren, um eine Erklärung und Diskussion über die Vorzüge der verschiedenen AR (p) den Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Für AR (1) Fehler können diese Initialisierungen wie in Tabelle 18.2 gezeigt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 18.2 Initialisierungen durchgeführt durch PROC MODELL: AR (1) ERRORS Die anfänglichen Verzögerungen der Fehlerausdrücke von MA (q) - Modellen können auch unterschiedlich modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: unbedingte kleinste Fehlerquadrate bedingte kleinste Fehlerquadrate Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Resten der kleinsten Quadrate für die gleitende durchschnittliche Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht-invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Man sollte erwägen, eine AR (p) - Näherung für den gleitenden Durchschnitt zu verwenden. Ein gleitender Durchschnitt kann in der Regel durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert sind. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SAS / ETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für folgende Arten von Autoregression verwendet werden: uneingeschränkte Vektorautoregression beschränkte Vektorautoregression Univariate Autoregression Um den Fehlerterm einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine Linearen Funktion von X1, X2 und einem AR (2) Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der vorhergehende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 18.58 gezeigten Anweisungen. Abbildung 18.58 LIST Optionsausgabe für ein AR (2) - Modell Die PRED-Präfixvariablen sind temporäre Programmvariablen, die verwendet werden, so dass die Verzögerungen der Residuen die korrekten Residuen sind und nicht die, die durch diese Gleichung neu definiert werden. Beachten Sie, dass dies den Aussagen entspricht, die explizit im Abschnitt Allgemeine Formulare für ARMA-Modelle beschrieben sind. Sie können die autoregressiven Parameter auch bei ausgewählten Verzögerungen auf Null setzen. Wenn Sie zum Beispiel autoregressive Parameter in den Lags 1, 12 und 13 wünschen, können Sie die folgenden Anweisungen verwenden: Diese Anweisungen erzeugen die in Abbildung 18.59 dargestellte Ausgabe. Abbildung 18.59 LIST-Option Ausgang für ein AR-Modell mit Lags bei 1, 12 und 13 Die MODEL-Prozedurauflistung der kompilierten Programmcode-Anweisung als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie zum Aufwärmen des AR-Prozesses verwendet werden. Die AR-bedingte Methode der kleinsten Quadrate verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die Anfangsverzögerungen autoregressiver Terme an. Wenn Sie die M-Option verwenden, können Sie anfordern, dass AR die unbedingte Methode der kleinsten Fehlerquadrate (ULS) oder Maximum-Likelihood (ML) anwendet. Zum Beispiel, Diskussionen dieser Methoden wird im Abschnitt AR Anfangsbedingungen zur Verfügung gestellt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie beispielsweise die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und die Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 18.60 dargestellte Ausgabe. Abbildung 18.60 LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression Um die Fehlerausdrücke eines Gleichungssystems als vektorautoregressiven Prozess zu modellieren, verwenden Sie die folgende Form des AR-Makros nach den Gleichungen: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für den autoregressiven Namen zu verwenden Werden. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Prozessnamens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 erzeugen: Für Vektorprozesse kann nur die Methode der bedingten kleinsten Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Zum Beispiel verwenden die folgenden Aussagen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind: Sie können die drei Reihen Y1Y3 als vektorautoregressiven Prozess modellieren In den Variablen statt in den Fehlern, indem Sie die Option TYPEV verwenden. Wenn Sie Y1Y3 als Funktion von vergangenen Werten von Y1Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 3 3 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Wenn Einschränkungen für einen Vektor-AR-Prozess nicht benötigt werden, hat die Syntax des AR-Makros die allgemeine Form, die ein Präfix für AR spezifiziert, das beim Konstruieren von Namen von Variablen zum Definieren des AR-Prozesses verwendet werden soll. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf nicht länger als 32 Zeichen sein. Ist die Reihenfolge des AR-Prozesses. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Lags müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben wird. Die ULS - und ML-Methoden werden für AR-AR-Modelle von AR nicht unterstützt. Dass das AR-Verfahren auf die endogenen Variablen anstelle der strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektorautoregression Sie können steuern, welche Parameter in den Prozess eingeschlossen werden, wobei die Parameter auf 0 begrenzt werden, die Sie nicht einschließen. Verwenden Sie zuerst AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Ausdrücke für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Verzögerungen zu generieren. Zum Beispiel sind die erzeugten Fehlergleichungen wie folgt: Dieses Modell besagt, daß die Fehler für Y1 von den Fehlern sowohl von Y1 als auch von Y2 (aber nicht von Y3) bei beiden Verzögerungen 1 und 2 abhängen und daß die Fehler für Y2 und Y3 davon abhängen Die vorherigen Fehler für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für eingeschränkten Vektor-AR Eine alternative Verwendung von AR ist es, Einschränkungen für einen Vektor-AR-Prozess durch Aufruf von AR mehrmals aufzuerlegen, um verschiedene AR-Terme und Lags für verschiedene festzulegen Gleichungen. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für AR zu verwenden, bei der Konstruktion von Namen von Variablen benötigt, um den Vektor AR-Prozess zu definieren. Gibt die Reihenfolge des AR-Prozesses an. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Gibt an, dass AR den AR-Prozess nicht generieren soll, sondern auf weitere Informationen warten soll, die in späteren AR-Aufrufen für denselben Namenwert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem AR-Aufruf angewendet werden sollen. Nur Namen, die im Endolistenwert des ersten Aufrufs für den Namenswert angegeben sind, können in der Liste der Gleichungen in eqlist erscheinen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, wird varlist standardmäßig Endolist. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich dem Wert von nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet laglist standardmäßig alle Verzögerungen 1 bis nlag. Das MA-Makro Das SAS-Makro MA generiert Programmieranweisungen für PROC MODEL für gleitende Durchschnittsmodelle. Das MA-Makro ist Teil der SAS / ETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende Mittelwertfehlerprozeß kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros entspricht dem AR-Makro, außer es gibt kein TYPE-Argument. Wenn Sie die kombinierten MA - und AR-Makros verwenden, muss das Makro MA dem AR-Makro folgen. Die folgenden SAS / IML-Anweisungen erzeugen einen ARMA-Fehlerprozeß (1, (1 3)) und speichern ihn im Datensatz MADAT2. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells unter Verwendung der maximalen Wahrscheinlichkeitsfehlerstruktur zu schätzen: Die Schätzungen der durch diesen Durchlauf erzeugten Parameter sind in Abbildung 18.61 dargestellt. Abbildung 18.61 Schätzungen aus einem ARMA-Prozess (1, (1 3)) Es gibt zwei Fälle der Syntax für das MA-Makro. Wenn Beschränkungen für einen Vektor-MA-Prozess nicht erforderlich sind, hat die Syntax des MA-Makros die allgemeine Form, die ein Präfix für MA vorgibt, das beim Konstruieren von Namen von Variablen verwendet wird, die benötigt werden, um den MA-Prozess zu definieren, und ist der Standard-Endolist. Ist die Reihenfolge des MA-Prozesses. Spezifiziert die Gleichungen, auf die das MA-Verfahren angewendet werden soll. Wenn mehr als ein Name angegeben wird, wird die CLS-Schätzung für den Vektorprozess verwendet. Gibt die Verzögerungen an, zu denen die MA-Bedingungen hinzugefügt werden sollen. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung im Endolisten angegeben ist. MA-Makro-Syntax für eingeschränkte Vektorbewegungsmittel Eine alternative Verwendung von MA ist es, Beschränkungen für einen Vektor-MA-Prozeß durch Aufruf von MA mehrere Male aufzuerlegen, um verschiedene MA-Terme und Verzögerungen für verschiedene Gleichungen anzugeben. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für MA, um beim Erstellen von Namen von Variablen für die Definition der Vektor-MA-Prozess zu verwenden. Spezifiziert die Reihenfolge des MA-Prozesses. Spezifiziert die Liste der Gleichungen, auf die das MA-Verfahren angewendet werden soll. Spezifiziert, daß MA nicht den MA-Prozeß erzeugen soll, sondern auf weitere Informationen, die in späteren MA-Aufrufen für denselben Namenwert spezifiziert werden, wartet. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem MA-Aufruf angewendet werden sollen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und / oder gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q vorhanden sind. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1/1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 / (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 1 / 0,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter kennzeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungs-AR-Modell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vergrößern, (unendlich) in der Größe zunehmen werden Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. Navigation


No comments:

Post a Comment